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ABSTRACT

The response of an elastic solid to an incident gravitational wave is calculated in the linearized ap-
proximation to general relativity. The response depends on irregularities in the shear-wave modulus,
and is strongest at free surfaces. Calculations are carried through in detail, first for a stationary flat
Earth and then for a spherical rotating Earth. The seismic response on a rotating Earth is split into five
frequencies, w, w + @, w + 2Q, where w is the frequency of the incident wave and { is the Earth’s rota-
tion frequency. The seismic signals expected from plausible theoretical models of pulsars are about a
factor of 105 below prevailing noise levels, but the uncertainties in this estimate are so great that an
attempt to detect pulsars seismically is not hopeless.

I. INTRODUCTION

J. Weber has been the pioneer in examining both theoretically (Weber 1961, 1968b)
and experimentally (Weber 1966, 1967, 1968a; Weber and Larson 1966) the detection on
Earth of gravitational waves from astronomical sources. Until this year, attention has
been concentrated on two widely separated wave bands, the kilohertz band and the
millihertz band. The kilohertz band was studied because it can be monitored with self-
contained detectors of reasonable size (Weber 1966) and because it is expected to be
emitted copiously in some cataclysmic astronomical events. The millihertz band was
studied because it can be monitored by observing the normal modes of vibration of the
Earth, although no astronomical emission process of suitable intensity has been proposed.

The discovery of pulsating radio sources' led Weber to propose (Weber 19685) a
search for gravitational radiation on the 1-Hz band. No theoretical model of a pulsating
radio source is generally accepted, but several possible models? involve rapidly moving
objects of stellar mass and would be powerful gravitational radiators. The detection of
gravitational waves from pulsating radio sources would be enormously helped if the
periodicity of each source were precisely known. In principle, one needs only to ac-
cumulate data from existing seismometers over a long enough time, and to look for
Fourier components at the pulsating radio source frequencies. Unfortunately, Weber
(1968b) estimated that the amplitude of the seismic response would be too small to be
detected against the background noise, even within the very narrow band width of the
signal from the pulsating radio source. However, the uncertainties in any such estimate
are very large; in the absence of a satisfactory theory of pulsating radio sources, a
search for their periods in seismic data ought by all means to be encouraged.?

In the present paper we calculate in detail the response of the Earth to a gravitational
wave in the 1-Hz band. We consider first a flat stationary Earth, and introduce later the
effects of sphericity and rotation. The calculation goes beyond Weber (1968b) in allowing
both compressive and shear-wave responses, and in including rotation. It turns out that
the essential physics of the problem is already contained in the flat-Earth model. The

1 For a recent review with references to the original papers, see Maran and Cameron (1968).

2 For example, non-radial pulsations of a white-dwarf star, radial pulsations of a rotating star, or
binary systems with short orbital period.

3 Dr Frank Press (private communication) has initiated such a search, so far with negative results.
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flat-Earth model is good because the wavelength of seismic waves in the 1-Hz band is a
few kilometers, small compared with the Earth’s radius and large compared with the
size of most surface irregularities. In the millihertz band the first of these two conditions
would fail, and in the kilohertz band the second would fail.

The main qualitative result of the calculation is that, in an elastic medium, gravita-
tional waves are absorbed only by irregularities of the shear-wave modulus. In a uniform
medium there is no absorption. The Earth has two major discontinuities, the outer sur-
face and the mantle-core interface. Other shear-wave irregularities are distributed in an
unknown way through the interior. We carry through the calculation of seismic re-
sponse, assuming a uniform homogeneous Earth. Thus we calculate the absorption of
gravitational energy at the outer surface, neglecting all contributions from the interior,
Since the detectors are at the surface, the surface absorption probably makes the domi-
nant contribution to their motions. In any case, the neglect of inhomogeneities will make
our estimates err on the low side.

It is possible to imagine arrangements of the local topography, in which a block of the
Earth’s crust may be seismically isolated by faults from its surroundings, and in which
a gravitational wave may excite resonant standing vibrations. In such a case the response
of a seismometer may exceed our estimate by a large factor, just as the amplitude of an
ocean tide may be considerably amplified by local resonances in certain bays and chan-
nels.

In order to have a seismic response large enough to be observed, we must be lucky at
both ends. We must have a source more powerful than we estimate, and we must also
have a favorable geophysical configuration at the receiving end. The payoff from a suc-
cessful observation would be correspondingly great. Any seismic detection of a pulsating
radio source would immediately achieve three important objectives: (1) indisputable
proof of the existence of gravitational waves; (2) independent evidence concerning the
nature of pulsating radio sources; and (3) acquisition of a new tool for exploring the
interior of the Earth.

II. FORMALISM

We consider an elastic solid whose equilibrium configuration is at rest in a Galilean
coordinate system (xo,%1,%2,%3) with the Lorentz metric

—ds* = ywdndx, = —dx® + dxd + da? + dx? . (2.1)

Greek indices are summed from 0 to 3; Latin indices, from 1 to 3. Elastic motions of the
solid are described by a 3-vector

zf(x) ’ j = 17 21 3 ’ (22)

representing the displacement from equilibrium of the mass-point at position (x1,%s,%3)
and time ¢ = x¢/c. The elastic properties of the medium are specified by a fourth-rank
tensor

Cikmn = Chkjmn = Cikam = Cmnjk , (2.3)

with twenty-one independent components which may be functions of position.
We use non-relativistic mechanics to describe the motion of the solid, so that the
Lagrangian is

«=T-V, (2.4)
T = S pédldr, (2.5)
V = %ijkngj'kZm’"dT , (26)
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where p(x) is the density at the point %, and
gk = (827/dxy) . (2.7
The energy-momentum tensor 7', has components
Too = 30227 + FCjkmnziFam™, (2.8)
Tor = pcix, (2.9)
Tjy = —Sjx = — Cikmn2™" . (2.10)
The law of conservation of momentum,
Ti* =0, (2.11)
gives the standard equation of motion of an elastic solid,
2 (o) = 5 S (212)
with the boundary condition
NtSy =0, (2.13)

where N* is the vector normal at any point on the surface. It is necessary to spell out these
elementary relations, in order to be sure that we have the correct energy-momentum
tensor to express the interaction of the solid with a gravitational wave. The conservation
law (2.11) expresses the invariance of the theory under space translations applied to the
coordinates 27 which describe the positions of mass-elements. If we applied the usual
field-theoretical recipe (Wentzel 1949) to the Lagrangian £, considering z%(x) as a
classical field, we would obtain the wrong energy-momentum tensor. The usual procedure
is based on translation invariance applied to the coordinates x;, and is invalid in a situa-
tion where the coordinates x; are anchored to a particular object.

A gravitational wave in the linear approximation of general relativity (Landau and
Lifshitz 1962) is described by potentials

g = 4+ b, (2.14)

where 4#* is extremely small compared with unity. If we work in the Hilbert gauge, de-
fined by

huy,v = %hvv.ﬂ ’ (2-15)
then all components %#* satisfy the wave equation. A plane wave is represented by
hy = Re [ae,, exp (ik*x,)], (2.16)

with a frequency w given by
w = cky = —ck® = c(k;k)12. (2.17)

The complex amplitude ¢ defines the intensity and phase of the wave, and the polariza-
tion tensor e,, can be chosen in the normalized form

ew = €0 =0, (2.18)
ejx = wil;Ly + u.R;Ry , (2-19)
lwal® + | |* = 1, (2.20)
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where #;, %, are the amplitudes of left-handed and right-handed circularly polarized com-
ponents. The standard polarization vectors L; and R; are complex unit vectors satisfying
the conditions

Ri=L, RiLj=1, (2.21)
RR; = L;Lj = Rjkj = Lik; = 0. (2.22)

In linearized gravitation theory, the interaction between the wave (2.14) and the
elastic solid adds a term

' = —ipT,, (2.23)
to the Lagrangian L. It is easy to verify that, even if ¢,, is not chosen in the special form

(2.18), the zero-components of 4#*” contribute nothing to by virtue of the gauge-condi-
tions (2.15) and the conservation-law (2.11). Thus &’ reduces to

= 1h#S;, . (2.24)
The elastic equations (2.12) and (2.13) are thereby modified to
9 5) — _Q_ X m,n . 1]mn
Y] (p2;) = £y [Cirmn(2 3], (2.25)
with the boundary condition
Nk[Cjkmn(zm'n - %’hmn)] = O (2.26)

on the surface.
An important special case of these equations occurs when the solid is isotropic. Then
(Love 1927)

Citmn = N0jibmn + w(8imbkn + 8ndkm) , (2.27)
with elastic moduli A, u which may still be functions of position. In fact,
p=ps*, A= p(®— 27, (2.28)

where s, v are the local velocities of shear waves and compressive waves, respectively.
Since the tensor #™" is traceless and divergenceless,

Smnh™ = (8/3xr)h™ = 0, (2.29)
the equation of motion (2.25) reduces to
.?_ 5)) = i m,m _(_3_ ke k,7\] — _ai) ik

This shows directly that a gravitational wave in the interior of an isotropic elastic
medium interacts only with irregularities in the shear modulus u. The boundary condi-
tion (2.26) becomes

ANz 4 uNi(5* 4 i — b#%) = 0, (2.31)

showing that the surface interaction also depends only on the local value of u at the sur-
face.

Going back to the general equations (2.25) and (2.26), we see that the gravitational
forces are always independent of the 27 and are simply added as an inhomogeneous
driving term to the linear elastic equations. The response of the Earth to a gravitational
wave can in principle be calculated exactly, if we know the normal modes of vibration of
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the Earth, by determining the coupling of the driving potential #™* into each normal
mode. In the millihertz band this would be a practical method of calculation; in the
1-Hz band the number of normal modes is so large that it is easier to solve equation (2.25)
directly.

Another useful feature of equations (2.25) and (2.26) is that the acceleration of any
mass-element is a linear function of the local elastic coefficients ¢;tmn. In particular, any
free mass will have zero acceleration. The coordinate system (xo,%1,22,%3) remains an
inertial system for slowly moving masses, even in the presence of gravitational waves.

A seismometer consists ideally of a mass M loosely connected to its surroundings by
weak springs. In the equation of motion (2.25) for the mass M, the term in 4™ multiplied
by a weak-spring constant is negligible. The mass M is thus unaffected by the gravita-
tional wave, while the surroundings move according to the local amplitude of the
Earth’s response. The seismometer records the relative displacement of the mass M from
its surroundings. This displacement, after making allowance for the spectral response of
the instrument, gives a direct measurement of the amplitude z7 of the Earth’s motion in
the vicinity.

III. FLAT-EARTH MODEL

As a rough approximation to describe the configuration of the Earth in the neighbor-
hood of a given point on the surface, consider an infinite half-space x3 > 0 filled with a
uniform isotropic elastic medium. Insofar as the response of the Earth to a gravitational
wave is mainly a localized surface effect, the flat-Earth model will be qualitatively cor-
rect. The uniformity and isotropy of the medium mean that the elastic velocities s and »
are constants, so that the coupling term in equation (2.30) vanishes. There is no effect
at all of a gravitational wave in the interior of the medium. The solutions of equation
(2.30) are plane waves running away from the surface with velocities s and v. Incoming
elastic waves are excluded, since we are neglecting signals propagating through the Earth
from the other side. The boundary condition (2.31) on the surface 3 = 0 becomes

Nojszmm + (a9 4 39) = uh¥i . 3.1)
Suppose that we have a gravitational wave with frequency w and wave-vector
k? = (w/c)[sin 6,0, cos 6], (3.2)

incident at an angle 8 to the inward normal. Let the wave be pure right-handed circularly
polarized. The gravitational potentials are then, according to equations (2.16)-(2.22),

hix = Re [aR;Ry exp (ikix; — iwt)], (3.3)
with
R; = 27Y%cos 6,i, — sin 6] . (3.4)

The elastic response of the medium will be a superposition of two plane waves, one
longitudinal and one transverse,

2/ = Re [yL? exp (ipix; — twt) + yri exp (igix; — iwt)], (3.5)
with
pip; = @/, ¢iq; = (W/s), (3.6)
yui = ap’, ¥rg; = 0. (3.7)
The boundary condition becomes
h=qa=k, p=gq=%", (3.8)
NB(YL™pm) + tu(yLips + yi*p; + yrigs + y0°%¢;) = auRsR; . (3.9)
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Now we use the fact that s and v are enormously less than the velocity of light ¢. By
equations (3.8), the components p1, ps, g1, ¢; are all of the order of magnitude (w/c),
while ps, g; are by equations (3.6) of the order (w/v) and (w/s). Thus the elastic waves
propagate perpendicularly to the surface to a very good approximation. The relation
between the incident gravitational wave and the emergent elastic wave is identical with
the relation between incident and refracted waves in an optical medium with enormously
high refractive index.
When we neglect p1, ps, 1, g2 compared with 3, g3, equation (3.5) gives

ps = (w/v), g = (w/5), (3.10)
and equation (3.7) becomes
yi't=y2=0, y*=0. (3.11)

We write then simply 7 for the vector whose (1,2)-components are yr and whose 3-com-
ponent is yz. The boundary condition (3.9) splits into separate equations for the three
components, namely,

yj = - ia(s/w) [R3R1,R3R27(3/9)R3R3]

(3.12)
= 1ia(s/w) sin O[cos 8,7, — (s/v) sin 6] .

Equation (3.12) gives complete information concerning the phase, amplitude, and direc-
tion of the seismic displacement induced at the Earth’s surface by a gravitational wave.
In this approximation all points on the surface move together in phase. Thus all the
instruments in a seismic array should respond coherently to a gravitational wave, pro-
vided that the extent of the array is small compared with the free-space wavelength
(27w¢/w), a condition which is well satisfied in practice for waves in the 1-Hz band.

The mass-elements on the Earth’s surface according to equation (3.12) describe el-
liptical orbits with the major axes in the 2-direction. If the incident wave is left-circularly
polarized, only the sign of the 2-component in equation (3.12) is reversed. The response
to a linearly polarized wave is obtained in an obvious way by taking a linear super-
position of the two circularly polarized responses.

The flux of energy carried into the Earth by the elastic wave (3.5) is

Q = 3p®s(|9'[2 + [9%]%) + v[*]’] (3.13)

per unit area of surface. For the case of a circularly polarized incident wave, equation
(3.12) gives

Q = %ps®|a|? sin? 0]1 + cos? 6 + (s/v) sin? 4] . (3.14)

This has to be compared with the energy flux in the incident gravitational wave (2.16),
which is (Landau and Lifshitz 1962)

Gw?|al?

F =G

| cos 6] (3.15)

per unit surface area. Hence the proportion of the energy crossing the surface which is
converted into elastic energy is

_Q_ (&xGe)(sY lsm "I [+ co 6+ (/o) sinz6] . (3.16)

cos §

The same formula holds, whether the gravitational wave is incident on the surface
from outside or from inside. For a linearly polarized wave, in which the polarization
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tensor ej; has a principal axis making an angle ¢ with the 2-direction, the factor in
brackets in equation (3.16) should be replaced by

2 sin? 2¢ + 2[cos? 6 + (s/v) sin? 6] cos? 2¢ . (3.17)

For the Earth, 8xGp is about 5 X 10~¢ sec?, while s is about 4.5 X 105 cm sec™. For
waves of 1-sec period, w = 27 sec™, so that the first two factors in equation (3.16) are

3
8’;‘2;” ~ 1077, (g) ~ 4% 1075 (3.18)

and
e= 1072, (3.19)

This very small efficiency of energy conversion is mainly due to the extreme mismatch
between the velocities s and c.

The quantity directly relevant to observation is the displacement y7 given by equation
(3.12). The numerical value of y/ depends on the amplitude a of the incident wave. A
reasonable order of magnitude for a is obtained by assuming the source of gravitational
waves to be equal in energy flux to a star of bolometric magnitude zero. Plausible dy-
namical models? can put out this amount of energy without difficulty. The energy flux of
a magnitude-zero source is (Allen 1955)

Aw?|al?

64rG

=2 X 107% erg cm™2 sec™!, (3.20)

which implies
la|w = 3 X 1072 gec?, (3.21)

The displacement in the 2-direction (horizontal) produced by a horizontally incident
wave (0 = }m) according to equation (3.12) is then

y = (as/2w) = 1.5 X 1072(s/w?) . (3.22)
If we take s = 4.5 X 10°% cm sec™?, w = 6 sec™}, we find
y=2X10""cm. (3.23)

This result, considering the rough nature of our assumptions, is in satisfactory agree-
ment with Weber’s (1968b) estimate.

It is noteworthy that the dissipation of seismic energy in the Earth plays no role in
our analysis. There are, of course, dissipative processes which should be included in the
equation of motion (2.25) in an exact theory. But in the flat-Earth model it makes no
difference to the elastic displacements at the surface whether the ingoing elastic waves
propagate freely to infinity or are dissipated in the interior. The details of the dissipative
processes would be important only if the surface effects could be amplified by reflected
waves from the interior, If reflections in the Earth are important, standing-wave patterns
can exist, and the amplitude of seismic response will depend on details of the local topog-
raphy and of local damping effects.

IV. EFFECTS OF SPHERICITY AND ROTATION

The normal modes of vibration of a uniform isotropic solid sphere have been fully
described by Love (1927). However, it is pointless to use these modes in the present
context, since the Earth as a whole is not even approximately uniform. It is reasonable
to consider the Earth as approximately uniform within a distance of a few tens of kilo-
meters from a given point on the surface, but within this distance it is also a good ap-

4 See n. 2.
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proximation to consider the Earth flat. A uniform-sphere model would have no ad-
vantage over the much simpler flat-Earth model.

In this section we shall calculate the seismic response to a gravitational wave on a
spherical rotating Earth, assuming that the local dynamics is described by the flat-Earth
equations. We consider only the kinematical effects of sphericity and rotation, produced
by the motion of the source relative to an Earth-bound detector. The effects of rotation
would be qualitatively similar if we replaced the flat-Earth model by a more exact dy-
namical theory. The main features of the rotation effects arise from purely group-
theoretical considerations.

Let (&,£,%3) be a coordinate system with origin at the center of the Earth, the 3-
direction pointing to the North Pole and the (1,2)-directions fixed in space. Let (x1,%s,23)
be a coordinate system with origin at a point O on the Earth’s surface and rotating with
the Earth, x; being vertically downward, x; horizontal north, «, horizontal east. Let
R, @ be the Earth’s radius and angular velocity, and let a be the latitude of O. The rela-
tion between the two coordinate systems is

£ = Mjyx, — MpR, (4.1)
x; — Rbjs = Myitr, (4.2)
where M ;i is the matrix
—sinacos Q@ —sinQ  —cos a cos Qf
M = | —sin a sin Q¢ cos %  —cos a sin Q1] . (4.3)
coSs a 0 —sin a

Suppose that there is a source of pure right-circularly polarized gravitational waves at
declination 8. The gravitational potentials in the &-system are then

hir(8) = Re {aR;Ry exp [(—iw/c)(¢1 cos B + & sin B + )]}, (4.4)
R; = 27Y2(—sin B,i, cos B) . 4.5)

The potentials must be expressed in terms of the x-coordinates before the theory of the
previous section can be applied. Thus the potentials observed with Earth-bound equip-
ment at the point O are

hjk(O) = Re{aMijnkRmRn

(4.6)
X exp [(—iw/c)(R cos a cos B cos Qf + R sin a sin B + ct)]} .
There are two kinematical effects of rotation represented in the potentials (4.6). The
first is the Doppler effect produced by the motion of the detector at O relative to the
distant source. The Doppler effect contributes the factor

exp (—iy cos ), v = (wR/c) cosa cos B, 4.7
in equation (4.6). Now
exp (—iy cos Q) = 2 (—i)"J.(y) exp (in) . (4.8)

The Doppler effect splits the incident wave with frequency o into a superposition of
waves with frequencies w, v + @, w + 29, . . ., the component (v + #Q) having ampli-
tude proportional to J,(v). The splitting is unimportant for waves in the 1-Hz band,

since then
v < (wR/¢) = 0.1, (4.9)
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while
[ Ta(M) ] < [GY)"/nl]. (4.10)

If we are considering waves with periods shorter than a tenth of a second, the rotational
Doppler splitting would be substantial.

The second kinematical effect of rotation is produced by the apparent motion of the
source in the sky, and is expressed in equation (4.6) by the time-dependent coefficients
M .;. The apparent-motion effect is independent of the Doppler effect, and we may isolate
the apparent-motion effect by dropping the factor (4.7) from the potentials (4.6). We as-
sume, then, an incident wave with potentials

hir = Re [aM ;M1 RnR, exp (—iwl)], (4.11)

as observed by detectors rotating with the Earth at the point O. According to the theory
of § 3, the displacement at O relative to the Earth-fixed coordinate system is

' = Re [y’ exp (—iwt)], (4.12)
yj = _ia(s/w)MmSRmRn[MnI,Mn%(S/v)M'nS] . (4.13)

We are here assuming that the flat-Earth model gives a valid description of the dy-
namics of earth motions in the region adjacent to the point O.

To complete the analysis of equation (4.13), it is convenient to resolve the polariza-
tion tensor R,R, into five parts, each part labeled by an index p = 2,1, 0, —1, —2,
which represents the component of “angular momentum” about the Earth’s rotation
axis. From equation (4.5) we find

: 4 1z 2 in2t+ 1
= ~D y 4 b4
mBRon p;2( 24 p) (cos?™? §) (sin?*? §)Gpn? , (4.14)
s=3(3 - 5), (4.15)
with the five standard polarization tensors now referred to the 3-axis,
1 +2 O 0 0 <+t
Gi2=%[ii -1 0, G=1% 0 O i,
Lo o0 o0 +1 4 0
(4.16)
—1 0 o
=612 0 -1 0
0 0 2
From equations (4.3) and (4.14) we find
2
MpsMaRuR, = D (cos*? 8)(sin?*? 8) exp (ipQ) V2, 4.17)
p=—2
with vectors V? depending on « alone. Hence the displacement (4.13) becomes
2
yi = —ia(s/w) 2 (cos*® 8)(sin?*? §) exp (ipQ)UP , (4.18)
p=-—2
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with the vectors U? given by

U#? = %[cos a sin a, F ¢ cos a,(s/v) cos? a] , (4.19)

U = [Fcos 2a, — i sin a, + (s/2) sin 2a], (4.20)

U® = [—3 sin a cos a,0,(s/)(3 sin? a — 1)]. (4.21)

The incident wave with frequency o produces a seismic response split into five com-
ponents with frequencies w, w + @, w + 2Q. Equations (4.19)-(4.21) give precisely the
relative amplitude, phase, and orientation of the five components. These formulae apply
to a pure right-circularly polarized incident wave; for left-circular polarization, the same
formulae hold with 3 replaced by (—8) and the signs of U*! reversed. In cases where the
Doppler splitting is significant, each of the five components of the displacement appearing
in equation (4.18) must be further split by Doppler effect according to equation (4.8).
Considering only the apparent-motion splitting, we calculate the energy flux going
into each of the five components of equation (4.18). According to equation (3.13), the
flux in the seismic wave of frequency (w — p) per unit area of Earth at latitude a is

Qb = (1/32)ps?|a]*(1 + sin BF»(1 — sin BT, (4.22)
with
Tio = 1 cos? a(l + sin? a + (s/2) cos? a) , (4.23)
T'y1 = cos? 2a + sin? a + (s/v) sin? 2a , (4.24)
To = 9sin?a cos® a + (s/v)(3 sin2a — 1)2. (4.25)

If we integrate this energy flux over the entire surface of the Earth, we find the total
energy absorbed per second into the frequency (w — pQ) to be

E, = (zR?/40)ps1 + %(S/v)]laP(z _;4_ P> (1 + sin B)*"#(1 — sin B)*7. (4.26)

Considering that the incident flux is given by equation (3.15), the rotating Earth presents
a cross-section

0= (D) (+2)(, 4 Y spr = snse,

for absorption of a right-circularly polarized gravitational wave from a source at declina-
tion B into a seismic wave at frequency (w — pQ). Summing equation (4.27) over the five
seismic frequencies, we find a total cross-section

- (EEED O (1Y), e

independent of the declination of the source. The same cross-section is obtained for a
non-rotating Earth by integrating equation (3.16). If, instead of summing over the five
frequencies, we choose a particular component p and average the cross-section (4.27) over
all positions of the source in the sky, we find

(op) = 30T, (4.29)

independent of p. A random distribution of sources puts equal amounts of energy into
each of the five frequencies w, » + Q, » + 2Q. An order-of-magnitude estimate of the

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969ApJ...156..529D&db_key=AST

J. - CI56. 529D

o]

DA

rt

No. 2, 1969 SEISMIC RESPONSE 539

cross-section (4.28), using the numerical ratios (3.18), is
or ~ 1073 cm? (4.30)

for radiation in the 1-Hz band.

The theory of this and the preceding sections applies almost without change to the
absorption of a gravitational wave at the core-mantle interface. At a liquid-solid inter-
face all the equations remain valid, except that the fraction (s/v) appearing in equations
(3.12), (3.14), (3.16), (3.17), (4.13), and (4.19)-(4.28) should be replaced by

[os/ (v + p"0)], (4.31)

where p’, v’ are the density and the sound velocity in the liquid. Since s at the core-mantle
interface is larger than at the outside surface, while the area is smaller, the energies
absorbed at the two surfaces are roughly equal. Depending on the frequency, the seismic
signals from the two surfaces may interfere constructively or destructively at the posi-
tion of any particular seismometer.

V. CONCLUSIONS

A realistic estimate’ of the background noise in a seismometer at a quiet location gives
for the rms linear displacement

(y) = 107"B¥2 cm , (5.1)

where B is the band width in hertz. This is valid for seismic background in the 1-Hz
band, excluding intervals of reverberation after major earthquakes and storms. We are
concerned with a displacement yp obtained by correlating the seismic record over a few
years with a sine wave at a particular pulsar period. It is not necessary that the intrinsic
period of the pulsar remain constant, provided that any secular variations of the period
are monitored. In any case, the apparent period varies annually because of the orbital
motion of the Earth. In processing the data to obtain yp, the sine wave must be fre-
quency-modulated so as to keep in step with the actual pulsar signals observed at the
same time. Provided that the relative timing of seismic and pulsar signals is maintained
within a small fraction of a second, the effective band width of the signal yp for a record
extending over a few years is

B = 1078 hertz, (5.2)

whether or not the pulsar period is constant to this accuracy. Hence the rms noise level
for yp is
(y)p =101 cm. (5.3)

If we use an array of 100 seismometers and average the signals coherently, we obtain
(y)p =102 cm. (5.4)

The use of an array may improve the noise level by substantially more than a factor of
10, since we are picking out vertically propagating waves and most of the background
noise is horizontal or oblique.® In any case, equation (5.4) is a safe estimate of the noise
level obtainable with present-day equipment and data processing.

The comparison of equation (5.4) with equation (3.23) shows that the expected re-
sponse to pulsars is about a factor of 10° too small to be detected. This estimate is based

5 See “A Discussion on Recent Advances in the Technique of Seismic Recording and Analysis,” in
Proc. Roy. Soc., A290, 287-476 (1966), especially the section “Teleseismic Signal Extraction,” by M. M.
Backus, pp. 343-367.

6 See n. 5.
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on three main assumptions: (1) a source equivalent to a star of zero bolometric magni-
tude, (2) the absence of reflection or resonance effects in the seismic response, and (3) a
noise level in vertically propagating waves equal to the omnidirectional average noise.
All three assumptions could turn out to be pessimistic. For example, a binary star with
components of solar mass describing a circular orbit with period 2 sec, situated at a
distance of 30 pc, would give a flux of gravitational energy about 108 times as intense as a
zero-magnitude star. The amplitude yp» would then be 10* times as large as we estimated
from assumption 1. The upper limit on possible source intensity is set, not by the
emission mechanism, but by the requirement that the source be reasonably long-lived.
Similarly, assumptions 2 and 3 could be pessimistic by factors of 10 or more. If we are
lucky in all three places, we might make up the necessary factor of 10° in the signal-to-
noise ratio.

Finally, we should remember the history of radio astronomy, which was greatly ham-
pered in its early stages by theoretical estimates predicting that few detectable sources
should exist. The predictions were wrong because the majority of sources were objects
unknown to optical astronomers at that time. Whenever a new channel of observation of
the Universe is opened, we should expect to see something unexpected. For this reason
above all, the seismic detection of pulsars is not as hopeless an enterprise as the calcula-
tions here reported would make it appear.

I am grateful to the Belfer Graduate School of Science, Yeshiva University, for a
visiting professorship during which this work was begun, and especially to Dr. A. G. W.
Cameron for stimulating my interest in pulsars. I benefited also from discussions with
Dr. J. Weber, Dr. F. Press, and Sir Edward Bullard.
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